3.4.70 \(\int \frac {\sqrt {x} (A+B x^2)}{a+b x^2} \, dx\) [370]

3.4.70.1 Optimal result
3.4.70.2 Mathematica [A] (verified)
3.4.70.3 Rubi [A] (verified)
3.4.70.4 Maple [A] (verified)
3.4.70.5 Fricas [C] (verification not implemented)
3.4.70.6 Sympy [A] (verification not implemented)
3.4.70.7 Maxima [A] (verification not implemented)
3.4.70.8 Giac [A] (verification not implemented)
3.4.70.9 Mupad [B] (verification not implemented)

3.4.70.1 Optimal result

Integrand size = 22, antiderivative size = 237 \[ \int \frac {\sqrt {x} \left (A+B x^2\right )}{a+b x^2} \, dx=\frac {2 B x^{3/2}}{3 b}-\frac {(A b-a B) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{7/4}}+\frac {(A b-a B) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{7/4}}+\frac {(A b-a B) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{7/4}}-\frac {(A b-a B) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{7/4}} \]

output
2/3*B*x^(3/2)/b-1/2*(A*b-B*a)*arctan(1-b^(1/4)*2^(1/2)*x^(1/2)/a^(1/4))/a^ 
(1/4)/b^(7/4)*2^(1/2)+1/2*(A*b-B*a)*arctan(1+b^(1/4)*2^(1/2)*x^(1/2)/a^(1/ 
4))/a^(1/4)/b^(7/4)*2^(1/2)+1/4*(A*b-B*a)*ln(a^(1/2)+x*b^(1/2)-a^(1/4)*b^( 
1/4)*2^(1/2)*x^(1/2))/a^(1/4)/b^(7/4)*2^(1/2)-1/4*(A*b-B*a)*ln(a^(1/2)+x*b 
^(1/2)+a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/a^(1/4)/b^(7/4)*2^(1/2)
 
3.4.70.2 Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.57 \[ \int \frac {\sqrt {x} \left (A+B x^2\right )}{a+b x^2} \, dx=\frac {2 B x^{3/2}}{3 b}+\frac {(-A b+a B) \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )}{\sqrt {2} \sqrt [4]{a} b^{7/4}}+\frac {(-A b+a B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{\sqrt {2} \sqrt [4]{a} b^{7/4}} \]

input
Integrate[(Sqrt[x]*(A + B*x^2))/(a + b*x^2),x]
 
output
(2*B*x^(3/2))/(3*b) + ((-(A*b) + a*B)*ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2 
]*a^(1/4)*b^(1/4)*Sqrt[x])])/(Sqrt[2]*a^(1/4)*b^(7/4)) + ((-(A*b) + a*B)*A 
rcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)])/(Sqrt[2]* 
a^(1/4)*b^(7/4))
 
3.4.70.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 239, normalized size of antiderivative = 1.01, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {363, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x} \left (A+B x^2\right )}{a+b x^2} \, dx\)

\(\Big \downarrow \) 363

\(\displaystyle \frac {(A b-a B) \int \frac {\sqrt {x}}{b x^2+a}dx}{b}+\frac {2 B x^{3/2}}{3 b}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 (A b-a B) \int \frac {x}{b x^2+a}d\sqrt {x}}{b}+\frac {2 B x^{3/2}}{3 b}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\int \frac {\sqrt {b} x+\sqrt {a}}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{b}+\frac {2 B x^{3/2}}{3 b}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{b}+\frac {2 B x^{3/2}}{3 b}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{b}+\frac {2 B x^{3/2}}{3 b}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{b}+\frac {2 B x^{3/2}}{3 b}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{b}+\frac {2 B x^{3/2}}{3 b}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{b}+\frac {2 B x^{3/2}}{3 b}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt [4]{a} \sqrt {b}}}{2 \sqrt {b}}\right )}{b}+\frac {2 B x^{3/2}}{3 b}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{b}+\frac {2 B x^{3/2}}{3 b}\)

input
Int[(Sqrt[x]*(A + B*x^2))/(a + b*x^2),x]
 
output
(2*B*x^(3/2))/(3*b) + (2*(A*b - a*B)*((-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[ 
x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(1/4))) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt 
[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[b]) - (-1/2*Log[Sqrt[a] - 
 Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(Sqrt[2]*a^(1/4)*b^(1/4)) + 
Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(2*Sqrt[2]*a^(1 
/4)*b^(1/4)))/(2*Sqrt[b])))/b
 

3.4.70.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 363
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x 
_Symbol] :> Simp[d*(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(b*e*(m + 2*p + 3))), 
 x] - Simp[(a*d*(m + 1) - b*c*(m + 2*p + 3))/(b*(m + 2*p + 3))   Int[(e*x)^ 
m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b*c - a*d 
, 0] && NeQ[m + 2*p + 3, 0]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.4.70.4 Maple [A] (verified)

Time = 2.68 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.52

method result size
derivativedivides \(\frac {2 B \,x^{\frac {3}{2}}}{3 b}+\frac {\left (A b -B a \right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(124\)
default \(\frac {2 B \,x^{\frac {3}{2}}}{3 b}+\frac {\left (A b -B a \right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(124\)
risch \(\frac {2 B \,x^{\frac {3}{2}}}{3 b}+\frac {\left (A b -B a \right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(124\)

input
int((B*x^2+A)*x^(1/2)/(b*x^2+a),x,method=_RETURNVERBOSE)
 
output
2/3*B*x^(3/2)/b+1/4*(A*b-B*a)/b^2/(a/b)^(1/4)*2^(1/2)*(ln((x-(a/b)^(1/4)*x 
^(1/2)*2^(1/2)+(a/b)^(1/2))/(x+(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2)))+2 
*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2 
)-1))
 
3.4.70.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 691, normalized size of antiderivative = 2.92 \[ \int \frac {\sqrt {x} \left (A+B x^2\right )}{a+b x^2} \, dx=\frac {4 \, B x^{\frac {3}{2}} + 3 \, b \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}\right )^{\frac {1}{4}} \log \left (a b^{5} \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 3 \, A B^{2} a^{2} b + 3 \, A^{2} B a b^{2} - A^{3} b^{3}\right )} \sqrt {x}\right ) - 3 i \, b \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}\right )^{\frac {1}{4}} \log \left (i \, a b^{5} \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 3 \, A B^{2} a^{2} b + 3 \, A^{2} B a b^{2} - A^{3} b^{3}\right )} \sqrt {x}\right ) + 3 i \, b \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}\right )^{\frac {1}{4}} \log \left (-i \, a b^{5} \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 3 \, A B^{2} a^{2} b + 3 \, A^{2} B a b^{2} - A^{3} b^{3}\right )} \sqrt {x}\right ) - 3 \, b \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}\right )^{\frac {1}{4}} \log \left (-a b^{5} \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 3 \, A B^{2} a^{2} b + 3 \, A^{2} B a b^{2} - A^{3} b^{3}\right )} \sqrt {x}\right )}{6 \, b} \]

input
integrate((B*x^2+A)*x^(1/2)/(b*x^2+a),x, algorithm="fricas")
 
output
1/6*(4*B*x^(3/2) + 3*b*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4* 
A^3*B*a*b^3 + A^4*b^4)/(a*b^7))^(1/4)*log(a*b^5*(-(B^4*a^4 - 4*A*B^3*a^3*b 
 + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a*b^7))^(3/4) - (B^3*a^3 
- 3*A*B^2*a^2*b + 3*A^2*B*a*b^2 - A^3*b^3)*sqrt(x)) - 3*I*b*(-(B^4*a^4 - 4 
*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a*b^7))^(1/4) 
*log(I*a*b^5*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^ 
3 + A^4*b^4)/(a*b^7))^(3/4) - (B^3*a^3 - 3*A*B^2*a^2*b + 3*A^2*B*a*b^2 - A 
^3*b^3)*sqrt(x)) + 3*I*b*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 
4*A^3*B*a*b^3 + A^4*b^4)/(a*b^7))^(1/4)*log(-I*a*b^5*(-(B^4*a^4 - 4*A*B^3* 
a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a*b^7))^(3/4) - (B^3 
*a^3 - 3*A*B^2*a^2*b + 3*A^2*B*a*b^2 - A^3*b^3)*sqrt(x)) - 3*b*(-(B^4*a^4 
- 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a*b^7))^(1 
/4)*log(-a*b^5*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a* 
b^3 + A^4*b^4)/(a*b^7))^(3/4) - (B^3*a^3 - 3*A*B^2*a^2*b + 3*A^2*B*a*b^2 - 
 A^3*b^3)*sqrt(x)))/b
 
3.4.70.6 Sympy [A] (verification not implemented)

Time = 1.83 (sec) , antiderivative size = 303, normalized size of antiderivative = 1.28 \[ \int \frac {\sqrt {x} \left (A+B x^2\right )}{a+b x^2} \, dx=\begin {cases} \tilde {\infty } \left (- \frac {2 A}{\sqrt {x}} + \frac {2 B x^{\frac {3}{2}}}{3}\right ) & \text {for}\: a = 0 \wedge b = 0 \\\frac {- \frac {2 A}{\sqrt {x}} + \frac {2 B x^{\frac {3}{2}}}{3}}{b} & \text {for}\: a = 0 \\\frac {\frac {2 A x^{\frac {3}{2}}}{3} + \frac {2 B x^{\frac {7}{2}}}{7}}{a} & \text {for}\: b = 0 \\\frac {2 A \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{b \sqrt [4]{- \frac {a}{b}}} - \frac {A \left (- \frac {a}{b}\right )^{\frac {3}{4}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{2 a} + \frac {A \left (- \frac {a}{b}\right )^{\frac {3}{4}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{2 a} + \frac {A \left (- \frac {a}{b}\right )^{\frac {3}{4}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{a} - \frac {2 B a \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{b^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {2 B x^{\frac {3}{2}}}{3 b} + \frac {B \left (- \frac {a}{b}\right )^{\frac {3}{4}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{2 b} - \frac {B \left (- \frac {a}{b}\right )^{\frac {3}{4}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{2 b} - \frac {B \left (- \frac {a}{b}\right )^{\frac {3}{4}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{b} & \text {otherwise} \end {cases} \]

input
integrate((B*x**2+A)*x**(1/2)/(b*x**2+a),x)
 
output
Piecewise((zoo*(-2*A/sqrt(x) + 2*B*x**(3/2)/3), Eq(a, 0) & Eq(b, 0)), ((-2 
*A/sqrt(x) + 2*B*x**(3/2)/3)/b, Eq(a, 0)), ((2*A*x**(3/2)/3 + 2*B*x**(7/2) 
/7)/a, Eq(b, 0)), (2*A*atan(sqrt(x)/(-a/b)**(1/4))/(b*(-a/b)**(1/4)) - A*( 
-a/b)**(3/4)*log(sqrt(x) - (-a/b)**(1/4))/(2*a) + A*(-a/b)**(3/4)*log(sqrt 
(x) + (-a/b)**(1/4))/(2*a) + A*(-a/b)**(3/4)*atan(sqrt(x)/(-a/b)**(1/4))/a 
 - 2*B*a*atan(sqrt(x)/(-a/b)**(1/4))/(b**2*(-a/b)**(1/4)) + 2*B*x**(3/2)/( 
3*b) + B*(-a/b)**(3/4)*log(sqrt(x) - (-a/b)**(1/4))/(2*b) - B*(-a/b)**(3/4 
)*log(sqrt(x) + (-a/b)**(1/4))/(2*b) - B*(-a/b)**(3/4)*atan(sqrt(x)/(-a/b) 
**(1/4))/b, True))
 
3.4.70.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 194, normalized size of antiderivative = 0.82 \[ \int \frac {\sqrt {x} \left (A+B x^2\right )}{a+b x^2} \, dx=\frac {2 \, B x^{\frac {3}{2}}}{3 \, b} - \frac {{\left (B a - A b\right )} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{4 \, b} \]

input
integrate((B*x^2+A)*x^(1/2)/(b*x^2+a),x, algorithm="maxima")
 
output
2/3*B*x^(3/2)/b - 1/4*(B*a - A*b)*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a 
^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*s 
qrt(b))*sqrt(b)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) 
- 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b) 
) - sqrt(2)*log(sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^ 
(1/4)*b^(3/4)) + sqrt(2)*log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x 
+ sqrt(a))/(a^(1/4)*b^(3/4)))/b
 
3.4.70.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.06 \[ \int \frac {\sqrt {x} \left (A+B x^2\right )}{a+b x^2} \, dx=\frac {2 \, B x^{\frac {3}{2}}}{3 \, b} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a b^{4}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a b^{4}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a b^{4}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a b^{4}} \]

input
integrate((B*x^2+A)*x^(1/2)/(b*x^2+a),x, algorithm="giac")
 
output
2/3*B*x^(3/2)/b - 1/2*sqrt(2)*((a*b^3)^(3/4)*B*a - (a*b^3)^(3/4)*A*b)*arct 
an(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/(a*b^4) - 1/ 
2*sqrt(2)*((a*b^3)^(3/4)*B*a - (a*b^3)^(3/4)*A*b)*arctan(-1/2*sqrt(2)*(sqr 
t(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/(a*b^4) + 1/4*sqrt(2)*((a*b^3)^ 
(3/4)*B*a - (a*b^3)^(3/4)*A*b)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt( 
a/b))/(a*b^4) - 1/4*sqrt(2)*((a*b^3)^(3/4)*B*a - (a*b^3)^(3/4)*A*b)*log(-s 
qrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a*b^4)
 
3.4.70.9 Mupad [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.30 \[ \int \frac {\sqrt {x} \left (A+B x^2\right )}{a+b x^2} \, dx=\frac {2\,B\,x^{3/2}}{3\,b}+\frac {\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )\,\left (A\,b-B\,a\right )}{{\left (-a\right )}^{1/4}\,b^{7/4}}-\frac {\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )\,\left (A\,b-B\,a\right )}{{\left (-a\right )}^{1/4}\,b^{7/4}} \]

input
int((x^(1/2)*(A + B*x^2))/(a + b*x^2),x)
 
output
(2*B*x^(3/2))/(3*b) + (atan((b^(1/4)*x^(1/2))/(-a)^(1/4))*(A*b - B*a))/((- 
a)^(1/4)*b^(7/4)) - (atanh((b^(1/4)*x^(1/2))/(-a)^(1/4))*(A*b - B*a))/((-a 
)^(1/4)*b^(7/4))